36 research outputs found

    Full 3D reconstruction of human motion by combining video streams

    Get PDF
    Understanding how sportsmen move is a prerequisite to improve their technique. For this reason, coaches have turned to modern technology to collect detailed data on athletes’ movements. Current solutions to create a 3D reconstruction of human motion are not very user-friendly, as they require athletes to wear transmitters or markers on their body. Researchers from IPI – an imec research group at Ghent University — now developed a markerless method to enable a full 3D reconstruction, by combining data from multiple video streams

    Shapes-from-silhouettes based 3D reconstruction for athlete evaluation during exercising

    Get PDF
    Shape-from-silhouettes is a very powerful tool to create a 3D reconstruction of an object using a limited number of cameras which are all facing an overlapping area. Synchronously captured video frames add the possibility of 3D reconstruction on a frame-by-frame-basis making it possible to watch movements in 3D. This 3D model can be viewed from any direction and therefore adds a lot of information for both athletes and coaches

    Cell-based approach for 3D reconstruction from incomplete silhouettes

    Get PDF
    Shape-from-silhouettes is a widely adopted approach to compute accurate 3D reconstructions of people or objects in a multi-camera environment. However, such algorithms are traditionally very sensitive to errors in the silhouettes due to imperfect foreground-background estimation or occluding objects appearing in front of the object of interest. We propose a novel algorithm that is able to still provide high quality reconstruction from incomplete silhouettes. At the core of the method is the partitioning of reconstruction space in cells, i.e. regions with uniform camera and silhouette coverage properties. A set of rules is proposed to iteratively add cells to the reconstruction based on their potential to explain discrepancies between silhouettes in different cameras. Experimental analysis shows significantly improved F1-scores over standard leave-M-out reconstruction techniques

    Parameter-unaware autocalibration for occupancy mapping

    Get PDF
    People localization and occupancy mapping are common and important tasks for multi-camera systems. In this paper, we present a novel approach to overcome the hurdle of manual extrinsic calibration of the multi-camera system. Our approach is completely parameter unaware, meaning that the user does not need to know the focal length, position or viewing angle in advance, nor will these values be calibrated as such. The only requirement to the multi-camera setup is that the views overlap substantially and are mounted at approximately the same height, requirements that are satisfied in most typical multi-camera configurations. The proposed method uses the observed height of an object or person moving through the space to estimate the distance to the object or person. Using this distance to backproject the lowest point of each detected object, we obtain a rotated and anisotropically scaled view of the ground plane for each camera. An algorithm is presented to estimate the anisotropic scaling parameters and rotation for each camera, after which ground plane positions can be computed up to an isotropic scale factor. Lens distortion is not taken into account. The method is tested in simulation yielding average accuracies within 5cm, and in a real multi-camera environment with an accuracy within 15cm

    Distributed multi-class road user tracking in multi-camera network for smart traffic applications

    Get PDF
    Reliable tracking of road users is one of the important tasks in smart traffic applications. In these applications, a network of cameras is often used to extend the coverage. However, efficient usage of information from cameras which observe the same road user from different view points is seldom explored. In this paper, we present a distributed multi-camera tracker which efficiently uses information from all cameras with overlapping views to accurately track various classes of road users. Our method is designed for deployment on smart camera networks so that most computer vision tasks are executed locally on smart cameras and only concise high-level information is sent to a fusion node for global joint tracking. We evaluate the performance of our tracker on a challenging real-world traffic dataset in an aspect of Turn Movement Count (TMC) application and achieves high accuracy of 93%and 83% on vehicles and cyclist respectively. Moreover, performance testing in anomaly detection shows that the proposed method provides reliable detection of abnormal vehicle and pedestrian trajectories

    Multi-camera complexity assessment system for assembly line work stations

    Get PDF
    In the last couple of years, the market demands an increasing number of product variants. This leads to an inevitable rise of the complexity in manufacturing systems. A model to quantify the complexity in a workstation has been developed, but part of the analysis is done manually. Thereto, this paper presents the results of an industrial proof-of-concept in which the possibility of automating the complexity analysis using multi camera video images, was tested

    Self-learning voxel-based multi-camera occlusion maps for 3D reconstruction

    Get PDF
    The quality of a shape-from-silhouettes 3D reconstruction technique strongly depends on the completeness of the silhouettes from each of the cameras. Static occlusion, due to e.g. furniture, makes reconstruction difficult, as we assume no prior knowledge concerning shape and size of occluding objects in the scene. In this paper we present a self-learning algorithm that is able to build an occlusion map for each camera from a voxel perspective. This information is then used to determine which cameras need to be evaluated when reconstructing the 3D model at every voxel in the scene. We show promising results in a multi-camera setup with seven cameras where the object is significantly better reconstructed compared to the state of the art methods, despite the occluding object in the center of the room

    Extrinsic calibration of camera networks using a sphere

    Get PDF
    In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use

    Human mobility monitoring in very low resolution visual sensor network

    Get PDF
    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics
    corecore